Welcome to Math 102 Section 107

Krishanu Sankar

MWF 8:00 - 8:50 AM, LSK 200

Math 102: Announcements

- Instructor: Krishanu Sankar
- Email: ksankar@math.ubc.ca
- Course website: https://wiki.math.ubc.ca
- ► Today:
 - Course information
 - Cell size and power functions

Homework

- WeBWorK (online, 3x/week) 10% (5% points dropped)
- ► Old-School Homework (written, 6 total) 10%

- Homework
 - WeBWorK (online, 3x/week) 10% (5% points dropped)
 - ► Old-School Homework (written, 6 total) 10%
- ▶ Quizzes (3 total) 15%

- Homework
 - WeBWorK (online, 3x/week) 10% (5% points dropped)
 - ► Old-School Homework (written, 6 total) 10%
- ▶ Quizzes (3 total) 15%
- ► Midterm (October 26) 15%

- Homework
 - WeBWorK (online, 3x/week) 10% (5% points dropped)
 - ► Old-School Homework (written, 6 total) 10%
- ▶ Quizzes (3 total) 15%
- ► Midterm (October 26) 15%
- ► Final exam (Date TBD) 50% (44% rule)

- ► Monday:
 - ▶ 7 am: Pre-lecture WeBWorK due
 - ▶ 8-8:50 am: Lecture

- ► Monday:
 - ▶ 7 am: Pre-lecture WeBWorK due
 - ▶ 8-8:50 am: Lecture
- ► Wednesday:
 - ► 7 am: Pre-lecture WeBWorK due
 - ▶ 8-8:50 am: Lecture

- ► Monday:
 - ▶ 7 am: Pre-lecture WeBWorK due
 - ▶ 8-8:50 am: Lecture
- ► Wednesday:
 - ► 7 am: Pre-lecture WeBWorK due
 - ▶ 8-8:50 am: Lecture
- ► Thursday:
 - ▶ 7 am: WeBWorK due

- ► Monday:
 - ▶ 7 am: Pre-lecture WeBWorK due
 - ▶ 8-8:50 am: Lecture
- ► Wednesday:
 - ► 7 am: Pre-lecture WeBWorK due
 - ▶ 8-8:50 am: Lecture
- ► Thursday:
 - ▶ 7 am: WeBWorK due
- ► Friday:
 - ▶ 8-8:50 am: Lecture & OSH or Quiz

Fellow students - study groups

- Fellow students study groups
- Me questions after class
- My office hours: Fill Doodle Poll on section website! (Provisionally MF9-10 and Th1-2, in LSK300B, starting this Friday)

- Fellow students study groups
- Me questions after class
- My office hours: Fill Doodle Poll on section website! (Provisionally MF9-10 and Th1-2, in LSK300B, starting this Friday)
- ► Math Learning Centre (LSK 301 & 302)
- Piazza

- Fellow students study groups
- Me questions after class
- My office hours: Fill Doodle Poll on section website! (Provisionally MF9-10 and Th1-2, in LSK300B, starting this Friday)
- ► Math Learning Centre (LSK 301 & 302)
- Piazza
- Free course notes (pdf) and supplemental videos

- Fellow students study groups
- Me questions after class
- My office hours: Fill Doodle Poll on section website! (Provisionally MF9-10 and Th1-2, in LSK300B, starting this Friday)
- ► Math Learning Centre (LSK 301 & 302)
- Piazza
- Free course notes (pdf) and supplemental videos
- ► Lecture slides/scans posted after class

Other Admin

 All questions regarding registration or sectioning should be directed to Mark MacLean or Margaret Ness.

Other Admin

- All questions regarding registration or sectioning should be directed to Mark MacLean or Margaret Ness.
- Lectures will be interactive with prompts and clicker questions. (register your iClicker on Connect)
- I'd like to thank Eric Cytrynbaum, Leah Edelstein-Keshet, and Cole Zmurchok, whose slides were the basis for these lectures.

Why are cells so small?

https://en.wikipedia.org/wiki/White_blood_cell/media/File:SEM_blood_cells.jpg

• WBCs are 12-15 microns in diameter.

► Cells absorb nutrients through their surface, and use the nutrients in their interior. Must have nutrient absorption rate ≥ consumption rate, or the cell dies!

- Cells absorb nutrients through their surface, and use the nutrients in their interior. Must have nutrient absorption rate

 consumption rate, or the cell dies!
- Mathematical model: assume the cell is spherical, and

- Cells absorb nutrients through their surface, and use the nutrients in their interior. Must have nutrient absorption rate

 consumption rate, or the cell dies!
- Mathematical model: assume the cell is spherical, and
 - 1. Absorption rate is proportional to surface area.
 - 2. Consumption rate is proportional to volume.

 Nutrient absorption rate is proportional to surface area

 Nutrient absorption rate is proportional to surface area

$$A = k_1 S$$

 Nutrient absorption rate is proportional to surface area

$$A = k_1 S = k_1 4\pi r^2$$

 Nutrient absorption rate is proportional to surface area

$$A = k_1 S = k_1 4\pi r^2$$

2. Consumption rate is proportional to volume

 Nutrient absorption rate is proportional to surface area

$$A = k_1 S = k_1 4\pi r^2$$

2. Consumption rate is proportional to volume

$$C = k_2 V$$

 Nutrient absorption rate is proportional to surface area

 $A = k_1 S = k_1 4\pi r^2$

2. Consumption rate is proportional to volume

$$C = k_2 V = k_2 \frac{4}{3} \pi r^3$$

where k_1 and k_2 are positive constants.

Cell shape

$$A(r) = 4\pi k_1 r^2$$
 $C(r) = \frac{4}{3}\pi k_2 r^3$

- Q1. Which of the following is true?
 - A. Absorption is greater than consumption for sufficiently large cells and vice versa for small cells.
 - B. Consumption is greater than absorption for sufficiently large cells and vice versa for small cells.
 - C. Both A and B are possible, depending on k_1 and k_2 .

Cell shape

$$A(r) = 4\pi k_1 r^2 \qquad C(r) = \frac{4}{3}\pi k_2 r^3$$

- Q1. Which of the following is true?
 - A. Absorption is greater than consumption for sufficiently large cells and vice versa for small cells.
 - B. Consumption is greater than absorption for sufficiently large cells and vice versa for small cells.
 - C. Both A and B are possible, depending on k_1 and k_2 .

► A function of the form f(x) = axⁿ (where a is a constant and n is an integer) is called a power function.

- ► A function of the form f(x) = axⁿ (where a is a constant and n is an integer) is called a power function.
- The integer n is called the degree, and a is called the coefficient.

- A function of the form f(x) = axⁿ (where a is a constant and n is an integer) is called a power function.
- The integer n is called the degree, and a is called the coefficient.

Example

$$A(r) = (4\pi k_1)r^2$$
 and $C(r) = \left(\frac{4}{3}\pi k_2\right)r^3$

are power functions with independent variable r.

- Q2. Match!
- A. Red: x^3 , blue: x^2 , purple: x^5 , yellow: x^4 .
- B. Red: x^5 , blue: x^4 , purple: x^3 , yellow: x^2 .
- C. Red: x^3 , blue: x^4 , purple: x^5 , yellow: x^2 .
- D. Don't know, please explain.

- Q2. Match!
- A. Red: x^3 , blue: x^2 , purple: x^5 , yellow: x^4 .
- B. Red: x^5 , blue: x^4 , purple: x^3 , yellow: x^2 .
- C. Red: x^3 , blue: x^4 , purple: x^5 , yellow: x^2 .
- D. Don't know, please explain.

Cell size

$$A(r) = 4\pi k_1 r^2$$
$$C(r) = \frac{4}{3}\pi k_2 r^3$$

Consumption is greater than absorption for sufficiently large cells and vice versa for small cells.

• When is the absorption rate greater the consumption rate?

- When is the absorption rate greater the consumption rate?
- ► i.e., for which values of r is the absorption rate A(r) bigger than the C(r)?

- When is the absorption rate greater the consumption rate?
- ► i.e., for which values of r is the absorption rate A(r) bigger than the C(r)?

$$A(r) = 4\pi k_1 r^2 > \frac{4}{3} k_2 \pi r^3 = C(r)$$
$$r < 3\frac{k_1}{k_2}$$

Does this make sense with the plot above?

Q3. Which of the following cells can survive? A. $r < 3\frac{k_1}{k_2}$ B. $r = 3\frac{k_1}{k_2}$ C. $r > 3\frac{k_1}{k_2}$

Q3. Which of the following cells can survive?

A. $r < 3\frac{k_1}{k_2}$ B. $r = 3\frac{k_1}{k_2}$ C. $r > 3\frac{k_1}{k_2}$

What about bigger cells, such as neurons, *Caulerpa prolifera*, or eggs?

► Course info

Today...

- ► Course info
- ► Cell size and mathematical models

Today...

- ► Course info
- Cell size and mathematical models
- ► Power functions: f(x) = ax² versus g(x) = bx³. Which is bigger? For which x?